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A family of one-dimensional classical chiral spin models with group G = U(N) 
or SU(N)~ is introduced, having complex nearest-neighbor interaction. These 
G x G invariant systems have self-adjoint positive transfer matrices and satisfy 
reflection positivity. In the case of G= U(N), for N= 1, 2, 3, sequences of 
first-order phase transitions are shown to occur. 
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1. I N T R O D U C T I O N  

One-dimensional classical spin systems having real-valued short-range 
interaction cannot produce phase transitions. As is well known, phase 
transitions in such systems only emerge when the restriction on the inter- 
action is appropriately modified. Complex interactions were already con- 
sidered long ago. Lee and Yang (1~ in their general characterization of phase 
transitions introduced a purely imaginary magnetic field that causes what 
is now called the Yang-Lee edge singularity. The resulting transfer matrix, 
however, is not self-adjoint. Investigating the equilibrium equations for the 

�9 correlation functions of the Ising model, Gallavotti  and Lebowitz (2) gave a 
solution for the one-dimensional system involving a complex Hamiltonian. 
Recently Asorey and Esteve (3) introduced a family of one-dimensional 
classical spin models with complex nearest-neighbor interaction, the real 
part of which constitutes the Zq clock models. These authors give in the 
introduction of their work a concise elucidating summary of the conditions 
for phase transitions of one-dimensional classical systems, to which we 
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refer, as well as references. Each of the new models introduced in ref. 3 
has self-adjoint transfer matrix, satisfies reflection positivity, and--most 
interestingly--produces a sequence of first-order phase transitions. 

Our work is an extension of ref. 3. We present classical one-dimen- 
sional chiral systems with group G = U(N) or SU(N) and complex nearest- 
neighbor interaction. All the models have the following properties: (i) the 
interaction is G x G invariant, (ii)the transfer matrix is a self-adjoint 
positive trace-class operator on ~2(G), and (iii)the complex measure 
generated by the Hamiltonian satisfies reflection positivity. These proper- 
ties are derived in Section 2 by harmonic analysis. In the case of the group 
U(N) the character expansion of the transfer matrix is explicitly worked 
out. The thermodynamic behavior is analyzed in Section 3. We first show 
for the U(1) mode~ already treated numerically in ref. 3, an infinite 
sequence of first-order phase transitions. Furthermore, for  large fl the 
transition points and the jumps of the energy per spin and of an order 
parameter are calculated. For the cases G = U(2) and G = U(3) the exist- 
ence of sequences of first-order transitions is shown if the imaginary part 
7 of the coupling is close in strength to the real part. In the complementary 
region similar behavior is found numerically. Moreover, the U(2) model 
can be treated analytically in the full range of 7, provided some technical 
assumptions are accepted. In an appendix we derive inequalities involving 
modified Bessel functions instrumental in our analysis. 

We conclude this introductory part by facing the question of how a 
complex Hamiltonian might arise physically in the context of classical 
statistical mechanics. One instance is provided by lattice gauge theories 
with a topological O term included in the interaction. In the author's 
opinion the one-dimensional systems presented should be considered as 
simple models which involve complex interactions but nevertheless imply 
self-adjoint positive transfer matrices. 

2. CH IRAL  SPIN M O D E L S  W I T H  C O M P L E X  I N T E R A C T I O N  

We consider a one-dimensional classical spin chain X 1 Gt consisting l = 1  

of L copies of a given unitary group G, where G is either U(N) or SU(N). 
Denoting by u the standard representation of G by N• N matrices, we 
assume the Hamiltonian to be 

L - - 1  

HL "= - -  E {Re trace(u/u*+,) + iy Im trace(uiu~'+ I)} (2.1 
l=o 

The unit of the inverse temperature fl is chosen such that the ferromagnetic 
coupling constant of the real part is equal to one. The coupling constant 
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7 of the imaginary part is restricted to the interval 7 ~ ( - 1 ,  1 ) ~ .  
Moreover, Uo-  ut,, i.e., periodic boundary conditions are imposed. The 
partition function of the system is 

L 

where du denotes the normalized Haar measure on G. The Hamiltonian 
(2.1) implies the transfer matrix 

T(u, v) = exp {¢/Re trace(uv*) + ifl? Im trace(uv*)} (2.3) 

Viewed as a function of the variable uv*, (2.3) is a continuous class 
function on G. Hence a character expansion 

T(u, v)= ~ d,G(fi, y) Z,(uv*) (2.4) 
"ceQ 

can be performed: the index r labels the classes of continuous inequivalent 
unitary irreducible representations of G, and ~2 is the family of all such 
classes; moreover, d~=z~(e ), where e is the unit element of G. The 
characters satisfy the generalized orthogonality relations 

t" 1 
j a .  = a  zo(vw*) (2.s) 

Proposition 1. The class function (2.4) is of positive type, i.e., 
G(/~, Y) is real nonnegative, Vr s ~2. 

Proof. Let s label the standard representation of G and ~ its complex 
conjugate; then G =  Z~. By series expansion, (2.3) can be written as 

1+~/ 1 1 - ~  
T(u,v)=,=o • . oZ" , (2.6) 

Since 1 _+? > 0 and all finite-dimensional unitary representations of a 
compact group are completely reducible (e.g., ref. 4), 

Z~(u) z~(u)= Z n~zo(u) (2.7) 
pe~Q 

where n~  are nonnegative integers, Proposition 1 follows. 

Proposition 2. The transfer matrix (2.3) considered as an 
(integral) operator on ~2(G)  is a self-adjoint positive trace-class operator: 

(i) T(u, v)= T(v, u) 
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(ii) ~ du ~ dv h(u) T(u, v) h(v) >>. O, h ~ 5 f z (a )  

(iii) SdulT(u,u)l<~ 

Proof. (i) and (iii) are easily seen and (ii) follows from the expansion 
(2.4) and Proposition 1. 

Comment .  {c~(fl, V)}~a are the eigenvalues of T. 
From (2.4) the real, positive series 

Z r =  ~ d~[e~(fl, 7)] L (2.8) 
ze~2 

follows for the partition function (2.2). On the configuration space the 
Hamiltonian (2.1) gives rise to the normalized complex measure 

L 

<" >L : = ( Z L ) - l  f t~=l= du,(.)exp(-'BHL) (2.9) 

To formulate reflection positivity (e.g., ref. 5) we first choose L even. 
(i) Reflection at a point between sites amounts to separating the sites of the 
circular lattice (periodic b.c.) into two disjoint sets by bisecting antipodal 
bonds: A = A + w A with A + - {1, Z,..., L/2 }, A _  - { L/Z + I,..., L }. 
Reflection 0 of the site n is defined by On = L + 1 -- n; hence OA +_ = A -v-, 
and the related Osterwalder-Schrader involution 0 is 

= F({uo~ (2.10) 

The transfer matrix (2.3) satisfies 

O [  T(lt n, b/n+ 1 ) ]  = T(Uo(n+ l) , Uon) (2.11) 

(ii) Reflection at a site, say n = L/2. Then we decompose A = A+ w 
A o ~ A _ ,  where A+ - {1, 2 ..... L / Z -  1}, A o -  {L/Z, L},  A =_ {L/2+ 1,..., 
L - 1 }. Reflection 0 of site n is defined by On = L - n, implying OA + = A T, 
~gAo=A o and (2.10), (2.11) remain unaltered. 

Proposit ion 3. For a complex function F supported on the con- 
figuration space of A+ in the case of (i) (reflection point between sites) 
or of A+ u A0 in the case of (ii) (reflection at a site), respectively, the 
normalized complex measure (2.9), L even, satisfies 

<FO[F] ) c e  ~+ 

(reflection positivity). 
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Remark 1. In the case of (ii), reflection positivity is satisfied for 
e ~, i.e., outside the interval ( - 1, 1), too, where the transfer matrix is still 

self-adjoint, but no longer positive. 

ProoL We first consider (i). Because of (2.11) and using for the two 
couplings connecting A+ with A the expansion (2.4), together with the 
factorization 

~ u ~@ • Z d u v * ) = ~ r s (  ) rs(v) (2.12) 
r,  s 

in terms of representation matrices, we obtain 

(FO[F])L = (ZL) -1 ~ d~co ~, d~c~ Z 
a T r, s, p, q 

f Ll~ I L/2 -- 1 2 T x dut I-[ T(un, un+l)~r~(ul)~,q(UL/2)F({u,n}) 
= n = l  

This form is real, nonnegative. 
In the case of (ii), we can write, recalling the convention Uo-= UL, 

f L / 2 -  1 L / 2 -  1 2 
(FO[F3)L=(ZL) l f duodUL/2 I~ du, 1-[ T(u,,un+~)F({um}) 

/ = 1  n = 0  

The r.h.s, is obviously real nonnegative, implying Remark 1, too. 

Remark 2. Let L be odd. Cutting the circle into two congruent 
pieces entails reflection at a site and bisecting the opposite bond. In the 
Hamiltonian the contribution of this bond has to be treated as the bisected 
bonds in the case (i) of even L, requiring 7 e ( - 1 ,  1). Then reflection 
positivity follows by proceeding analogously to the case of even L. 

Thermodynamic quantities emerge in the thermodynamic limit: from 
(2.8) there follows for the free e n e r g y f p e r  spin 

- f i r =  max in G(fl, 7) (2.13) 
a E $ 2  

and for the internal energy per spin 

1 0 
e - -] i+rn Z ~ an Z L = ~-~ (fif) (2.14) 

As a local order parameter we introduce the purely imaginary function 

t/l = i Im trace(ulu*+ 1) (2.15) 



1354 M~iller 

Due to translation invariance we can use 

( q )  - lim In Z L = - ~ f  (2.16) ~7 

This expectation value of a purely imaginary function is real. The 
coefficients c~ determining f, (2.13), are obtained from (2.3), (2.4), 

d~co(~,7)=I duz~(u)exp[3 {Retraceu+iTImtraceu) (2.17) 

For the unitary groups U(N) the characters have been given by Weyl(6): 
The classes of continuous inequivalent unitary irreducible representations 
are characterized by 

~ ' ~ 0 " ~  {'~} ~- (~1, ~"2 ..... ~N), /~i ~ ,  ~ 1 ~ / ~ 2 ~  " ' "  ~ / ~ N  (2 .18)  

Class functions on U(N) can be parametrized by z~=exp iq)l, q)le [0, 2~), 
for l =  1, 2,..., N; then 

N 
trace u =  ~ zj (2.19) 

j = t  

We define according to (2.18) for a given {)~} the N x  N matrix 

~fk l  : (Zk)"l'/+ N -- l (2.20) 

with the determinant 

~ {~(z)- det{~k,}, ~(z)-~o,o,,o~(Z) (2.21) 

Then Weyl's famous character formula and the dimension of the represen- 
tation can be written as 

Z{~}(z) = [A(z)] -1 A{~}(z) (2.22a) 

]1 
d{~0= (k-j) 1-[ (2:-)~k + k - j )  (2.22b) 

j < k  

respectively. Moreover, the normalized Haar measure for class functions 
has the form 

du=-~., i 2 g J  IA(z)[2 (2.23) 
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From (2.22), (2.23) we deduce the coefficients (2.17) as 

(1+ 7"](~.,+~.2+ +;.N~/2 

N 

x ~ sgnr~ [ I  I#+~(jl-j(fl(1-72) 1/2) (2.24) 
~z~ S N  j = l  

Due to Proposition 1 these N x  N determinants formed of modified Bessel 
functions Im, m E Z, are nonnegative! Because of the symmetry relations 

C(.J.I,,~2,...,.~N)(] ~' - - 7 )  = C(--).  N ..... .;q)(/~' 7) (2.25) 

it suffices to consider the case 0 ~< 7 < 1. Moreover, the notation 

(1 +7"] 1/2 72)1/2 
P = \ l - T /  >1,  x = f l ( 1 -  (2.26) 

is used in the sequel. 

3. FIRST-ORDER PHASE TRANSITIONS 

A. We first treat the case G = U(1). Then (2.24) reduces to 

n~Z:  cn(fl, 7)=p~I~(x) (3.1) 

already obtained in ref. 3. Defining 

r ,  = in c,(fl, 7) (3.2) 

we see from (2.13) that we have to look for 

P = max r~ (3.3) 
n E Z  

with 7 fixed, as a function of ft. We first realize that Lemma A.1 implies 
r ~ -  ro < 0 for n negative. We present a systematic analytic treatment based 
on the following result. 

Proposition 4. Let nSNo ,  p > l ,  a n d x e N + ; t h e n  

1 
L,(X ) -- p L , + I ( X )  

has a unique solution x = xn +1; it satisfies 

I,+ p(X,+ ,) > PI,,+ p+ l(xn+1), V p e ~  
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ProoL From LemmaA.1 of the Appendix follow directly the 
existence and uniqueness of the solution. Lemma A.2 and the first part 
of the proposition give 

[In+ l(x~+ ,)]2 > in+2(Xn+ 1) I,(X,+ 1) = In + 2(Xn + l) pin+ ,(X,+ 2) 

which is the second part for p = 1. The general case follows by induction. 
It is useful to consider the difference 

I , + l ( x ) ;  (3.4) 
r n + l - - r n = l n  P In(x)J  

as a function of increasing x. 
O. In the high-temperature region x--* 0 we obviously have P--ro. 
1. Increasing x, because of Lemma A.1 there is a unique x~ such that 

Io(x~)= pI~(Xl) (3.5) 

Furthermore, r l ~ r  o for x~x~ and from (3.4) we deduce, employing 
Proposition 4, that 

x=x l :  r l>r2>r3>. . .  (3.6) 

2. Increasing X>Xl leads, because of LemmaA.1, to a unique x2 
satisfying 

Ii(x2) = pI2(x2) (3.7) 

Moreover, r2 ~ rl for x ~ x2 and by Proposition 4 

x = x 2 :  r2>r3>r4> ... (3.8) 

Continuing in this manner, we deduce an increasing sequence {xn}, Xo-  0, 
together with 

n~[N0: P = r  n for Xn<X<Xn+I (3.9) 

At each xn, n E N, a first-order phase transition occurs, since f jumps from 
one function to another, with (2.14) discontinuous. The transition points xn 
for large n can be evaluated asymptotically coupling x with v by 

x = a v + b + ( 9 ( ~ )  (3.10) 

with constants a, b to be determined by solving 

1 _ I~+,(x__) ( 3 . 1 1 )  
p L(x) 
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for large v. Using (A.1), which can be read as the expectation of t with 
respect to a probability measure, a saddle point expansion yields for (3.10) 

2p 

Observing our enumeration of the transition points x , ,  

I~_ ~(x.) = pI~(x~) (3.13) 

we obtain from (3.12) with (2.26) 

f l , ~ y  (3.14) 

The discontinuities of the internal energy per spin (2.14) and of the order 
parameter (2.16) at the nth transition point fl~ 

2 n -  1 
( J~ ) . -  - -  2~, (3.15) 

1 { 1 + ( 2 n - 1 ) ? '  2,2} (3.16) 

behave for large n, because of (3.14), as 

( ~ ) ~  -L~ + o(~ -~3 
n 

(3.17) 

(A (q 5). ~ 7 + (9(n -2) (3.18) 
n 

We observe that both jumps vanish in the limit fl~ ~ ~ .  

B. Considering now G = U(2), we have the coefficients 

21,22EZ, 21/> 22 
(3.19) 

c.1,;.2~(~, ~) = p~, + ~2Li,~2(x ) 

where the functions Iu, v defined in (A.4) of the Appendix are used. 
According to (2.13), the thermodynamics is determined by 

g = max In c(al,x2) (3.20) 
21 ~ 22 

The search of the maximum on the two-dimensional array is reduced to a 
one-dimensional problem by Lemma A.3: it implies that for fixed 2~ + 22 
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the largest coefficient is obtained when 2 1 -  22 is smallest. In addition we 
have the symmetries, for n e  N o and xE ~+ ,  

I , , _ , = I , , , ,  I n,_._l----In+l.. (3.21) 

Hence (3.20) is equivalent to 

~ = l n  max{c(,.,), c(, + 1,,)} (3.22) 
n~No 

We first analyze (3.22) for large, fixed p. We rescale/~ again, defining 

x 1 
z = p  ~ = ~  (1 +y)f l  (3.23) 

and obtain from Lemma A.5 

c( . , . ) -  (n + l )! n! 1 n + 2  f" (3.24) 

_ { 1 + 2 -  
c(.+, . . ,  ( n + 2 ) t n ,  n + 2 \ p J Z g " ( - ~ ) }  (3.25) 

with f ,  and g, satisfying uniformly in n 

14 2 
~ < f,, ( ~ ) ,  g, ( ~ )  < exp (p  x/2 ) (3.26) 

Thereupon we can deduce :~ for fixed p Sufficiently large and small z. It 
is then easily seen that for given z no coefficient c(,+1,,~ is the largest 
coefficient of the set entering (3.22). Which of the other coefficients is 
maximal depends on z. We find first-order phase transitions, n = 1, 2, 3,..., 

/~n l < / ~ < f l n  : s =  In c( . -  l,. 11 (3.27) 

with//o -= 0 and inverse transition temperatures 

~~ ~/~ 1+2T~0 .(n+lti--~ (3.28/ 

The related jumps of the internal energy per spin are 

2 
e(/~, + 0, 7 ) - e ( / ~ , - 0 ,  7 )=  - - -  (3.29) /L 

The sequence of first-order phase transitions deduced for large values of p 
also appears for small values of p. As a typical representative of numerical 
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evaluations performed with small p we present in Fig. 1 the case of p = 2, 
where eight subleading coefficients are included. If one accepts the conjec- 
tures stated in the Appendix, the case of G = U(2) can be treated in com- 
plete analogy to the analysis performed before with G = U(1): Because of 
Conjecture 3 of the Appendix, the coefficients c(,+ 1,n) are irrelevant for g. 
Conjecture 2 implies the analogue of Proposition 4, replacing there p by p2 
and each Im appearing by Im.m. Finally, Conjecture 1 is the substitute 
of LemmaA.1. As a consequence, an infinite sequence of first-order 
transitions emerges. 

C. For G = U(3) the coefficients (2.24) are 

l,m, nsZ,  l>~m>~n 

2pl+m+ n 

c(z .... ) - ( l - - m +  1)(l--n+ 2)(m--n+ 1) 

/z 1l+1 It+2 

Im-1 Im Im+l 

I~_2 I._1 I~ 

(3.30) 

the modified Bessel functions having the variable x. Similar to G =  U(2), 
we can deal analytically with the case of large, fixed p using the rescaling 
(3.23). For small fl the largest coefficient is C(o,o,o). Increasing fl, at 

fl, = ~ + y  (6) j/s {1 +(9(1 - 7 ) }  (3.31) 

In c(z, ,  ~ )  - In C(o,o ) 

4,4 

. . .4 ,3  
, . . .  3,3 

�9 " " "  . .  , - .3 ,2  

3 , ~ 2 , 2  

""" 2 

. . . . . . . . . . . . . . . . . . .  , o  

, ......... i , ' .  
1 " ' : "  '"  .-" 4 5 6 7 8 x 

1,0 

Fig. 1. The case G = U(2) with p = 2: the difference In c(x,,~2 ) - I n  c(0,o ) for the index pairs 
(2 I, 22) as indicated is given as a function of x, Eq. (2.26). 

822/70/5-6-18 
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C(1,1,1 ) crosses C(o,o.o) to become the largest coefficient until 

f12 = ~ + 7  (24)1/3 {1 + (_9(1 -7)}  (3.32) 

w h e r e  c(2,2 ,2) c rosses  c(1,1,1) and becomes the largest coefficient. We observe 
that the order term is n dependent; compare (3.28). Hence, continuing in 
this way, we eventually reach values of/~ beyond which the method is no 
longer applicable. Numerical evaluation of (3.30), however, suggests that 
these first-order phase transitions occur for all values of p. 

4. C O N C L U D I N G  R E M A R K S  

Within the family of chiral spin models introduced we have shown 
the existence of sequences of first-order phase transitions for those with 
G = U(1), U(2), U(3). It seems not too audacious to guess infinite sequen- 
ces of first-order phase transitions to occur for all U(N) models. It should 
be noted, however, that the existence of these phase transitions depends on 
the choice of the boundary conditions: replacing the periodic ones by open 
boundary conditions, the sum (2.8) reduces to a single term (the coefficient 
of the trivial representation). It is remarkable that in the non-Abelian cases 
analyzed only one-dimensional representations (i.e., powers of the determi- 
nant of u) survive the thermodynamic limit. For the systems with 
G = SU(N), N >  2, the thermodynamic properties still have to be worked 
out. Preliminary results indicate that, in contrast to the systems with 
G= U(N), the group G=SU(3) does not lead to a phase transition; 
further work is in progress. We conclude by observing that in place of the 
standard representations used in the Hamiltonian we could employ any 
other one--even linear combinations with positive coefficients--keeping 
Propositions 1-3. 

A P P E N D I X .  INEQUALIT IES I N V O L V I N G  M O D I F I E D  
BESSEL F U N C T I O N S  

Here we mainly exhibit inequalities involving modified 
functions Iv(x) which are instrumental in our analysis. 

Lemma A.1. Let N ~ v >  -1/2, fixed; then the map 

v + l ,  •+ --, (o, 1) 
Iv 

is strictly increasing and bijective. 

Bessel 
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Proof. A well-known integral representation [ref. 7, Eq. 3.71, (9)] 
implies 

Iv+l(X ) ~11 dt (1 - t 2 )  v 1/2texp(xt) 
(A.1) 

I~(x) - $11 dt (1 - t2) v- ~/2 exp(xt) 

Hence, we can write 

L + l ( x )  d 
In g(x) (A.2) 

L ( x )  dx 

f+~dt(1 t2)~-l/2exp(xt) (A.3) g(x) = -1 

Due to its particular form, g(x) is "log-convex," i.e., in g(x) is strictly 
convex (e.g., ref. 8), hence its derivative is strictly increasing. The range of 
the map follows by considering the quotient at small and large values of 
x ~ + .  

L e m m a  A.2. L e t m ~ N  a n d x e ~ + :  

Jim(X)] 2 > Ira+ 1(X) Ira_ I(X) 

This is proven later. 
We define for #, v e N, # ~> v, and x e N + 

I ; , v ( x ) = ( # - v + l ) - ~ { I o ( x ) L ( x ) - I ; + l ( X ) L  x(X)} (A.4) 

From ref. 7, Eq. 5.41, (1), there follows the power series representation 

I~'v(x) = 2 ~=o k ! F ( t ~ + v + k + l ) F ( l ~ + k + 2 ) F ( v + k + l )  

(A.5) 

If ~t + v is a negative integer, the quotient of the F functions with # + v 
in the respective arguments has to be represented by the product 
(/~ + v + k + 1)k; see, e.g., ref. 7, Section 4.4. Considering (A.5) at # = v = 
m e  N immediately proves Lemma A.2. Moreover, (A.5) with #, veT/ 
proves directly the positivity of the coefficients of the character expansion 
(2.4) in the case of G = U(2), a result inferred before more generally from 
the representation theory of compact groups. 

kemma A.3. For m, n~7/, m>~n, and x ~ +  
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Proof. From (A.5) there follows for the difference 

Im, n(X)--Im+l,n--l(X) 

k=0 

F ( m + n + 2 k + l )  
Xk! F ( r n + n + k  + 1 ) F ( m + k + 3 ) F ( n + k +  1-) 

proving the claim. 

Lemma AI4. For n ~ N o a n d x 6 ~ +  

I. , .(x) > I. + 1,n +I(X) 

(A.6) 

Proof. Due to Lemma A.1, the x derivative of In+l/I n is positive, 
implying the claim when the functional equation for I "  is used. 

For part of our analysis it is necessary to control In,. and In+l,. for 
given x uniformly in n. From (A.5) we obtain, employing the duplication 
formula of the F function, the following result. 

Lemma A.5. F o r n ~ N o a n d x 6 R +  

I . , n (x ) -  (x/2)2" 1+  f . (x )  
(n+l)!n! 

1--5 < f~(x), g~(x) < exp x ~ 

uniformly in n. 

Finally we state three conjectures which unfortunately we could not 
prove; they have been tested numerically for n ~< 20. 

Conjecture 1. For n~No,  the quotient [ / . ,n(X)]--l / .+l ,n+l(X) 
maps E+ on (0, l)  strictly increasing. 

Conjecture 2. For n~ [~, xE[E+ 

[In,n(X)'12>In+l,n+l(X)In 1,n- l (x)  
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C o n j e c t u r e  3. Let [ R + ~ p > l  a n d n ~ N o ; t h e n  

p i , + l , n ( x )  " p 2 i , + l . , + l ( X ) < i n , , ( x  ) 

for the un ique  solut ion x of the equation.  

C o m m e n t .  Conjectures 1 and  2 can be verified analytically for small 
and  large values of x. 
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